Human perceptual overestimation of whole body roll tilt in hypergravity.
نویسندگان
چکیده
Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally.
منابع مشابه
Human Perceptual Overestimation of Whole - Body Roll Tilt in Hyper - Gravity 1 2 Running title : Roll Perception in Hyper - Gravity 3 4
Human Perceptual Overestimation of Whole-Body Roll Tilt in Hyper-Gravity 1 2 Running title: Roll Perception in Hyper-Gravity 3 4 Torin K. Clark 5 Michael C. Newman 6 Charles M. Oman 7 Daniel M. Merfeld 8 Laurence R. Young 9 10 11 1 Man Vehicle Laboratory 12 Department of Aeronautics and Astronautics 13 Massachusetts Institute of Technology 14 Cambridge, MA, USA 15 16 2 Charles Stark Draper Labo...
متن کاملThe Effect of Ocular Torsional Position on Perception of the Roll-tilt of Visual Stimuli
Perceived postural orientation during whole-body roll-tilt is commonly inferred from settings of a visual line to the perceived gravitational horizontal or vertical. This inference assumes that the change in ocular torsional position (ocular counterrolling) which occurs during roll-tilt has no effect on the perceived orientation of the visual stimulus. We investigated this assumption by measuri...
متن کاملWhole-Body Roll Tilt Influences Goal-Directed Upper Limb Movements through the Perceptual Tilt of Egocentric Reference Frame
In our day-to-day life, we can accurately reach for an object in our gravitational environment without any effort. This can be achieved even when the body is tilted relative to gravity. This is accomplished by the central nervous system (CNS) compensation for gravitational forces and torque acting on the upper limbs, based on the magnitude of body tilt. The present study investigated how perfor...
متن کاملBody-tilt and visual verticality perception during multiple cycles of roll rotation.
To assess the effects of degrading canal cues for dynamic spatial orientation in human observers, we tested how judgments about visual-line orientation in space (subjective visual vertical task, SVV) and estimates of instantaneous body tilt (subjective body-tilt task, SBT) develop in the course of three cycles of constant-velocity roll rotation. These abilities were tested across the entire til...
متن کاملNeck muscle vibration alters visually-perceived roll after unilateral vestibular loss.
Unilateral sternocleidomastoid muscle vibration was applied to 21 normal and six unilateral vestibular deafferented (uVD) human subjects at head erect and during 30 degrees left and right whole body roll-tilt. In normal subjects, neck vibration had no effect upon the settings of a visual bar to subjective visual horizontal (SVH) in any roll-tilt condition. In uVD subjects settings to SVH were s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2015